Прямой вариационный алгоритм усвоения данных сети мониторинга состава атмосферы с учетом пространственных производных функции неопределенности
Назначение Восстановление и дополнение информации о пространственном и временном распределении полей концентраций пассивных загрязняющих веществ на территории города и прогноз их изменений на основе математической модели переноса примесей и данных контактных измерений сети мониторинга.
Область применения Оценки загрязнения атмосферы города по данным системы мониторинга в составе технологии "Умного города".
Используемый алгоритм Вариационный алгоритм усвоения данных, в котором усвоение одного и того же набора данных производится квази-независимо на отдельных стадиях схемы расщепления на одном шаге по времени. На каждой стадии схемы расщепления по пространственным переменным, на ограничениях математической модели, прямым алгоритмом матричной прогонки находится условный минимум целевого функционала, совмещающего невязку между измеренными значениями и их смоделированными аналогами, а также некоторый стабилизатор, включающий норму функции неопределенности (управления) и норму её пространственной производной. Такой стабилизатор позволяет получать менее локализованные решения по пространству (по сравнению с алгоритмом, учитывающим только норму самой функции неопределенности), но, тем не менее, согласующиеся с данными измерений.
Алгоритм представлен в статьях:
1. Penenko A., Penenko V., Mukatova Z. Direct data assimilation algorithms for advectiondiffusion models with the increased smoothness of the uncertainty functions // 2017 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON). Novosibirsk, 2017. P. 126-130. doi: 10.1109/SIBIRCON.2017.8109853.
2. Пененко А.В., Мукатова Ж.С., Пененко В.В., Гочаков А.В., Антохин П.Н. Численное исследование прямого вариационного алгоритма усвоения данных в городских условиях // Оптика атмосферы и океана (представлено, положительные рецензии).
Функциональные возможности Программа осуществляет оценку текущего уровня загрязнений на основе данных измерений системы мониторинга, параметров модели переноса примесей (скоростей ветра и коэффициентов диффузии) и начального распределения полей концентраций.
Инструментальные средства создания С++, GSL, NETCDF, boost.
Язык:C++
Поддерживаемые операционные системы: Windows, Linux
Установленные библиотеки: GSL, NETCDF
Вложение | Размер |
---|---|
imdaf_da.pdf | 1.6 МБ |