Разработки СО РАН - каталоги программ и БД
Поиск по каталогам:
2014-04-16
Назначение: Библиотека "Voss" обеспечивает построение реализаций одно- и двумерных фрактальных броуновских функций на равномерных сетках с помощью классической и обобщённой версий алгоритма последовательных случайных сложений Фосса. Область применения: Моделирование стохастических фрактальных структур, используемых в задачах потенциальной перколяции, при исследовании полимеризации и гелеобразования, процессов массопереноса в пористых средах, в эконофизике, анализе финансовых рынков и т.д. Используемый алгоритм: Фрактальный броуновский процесс (или функция) представляет собой обобщение винеровского случайного процесса на случай зависимых приращений. Алгоритм последовательных случайных сложений основан на использовании рандомизированной системы итерированных функций: xk+1 = xk + Δxk, где k = 0, 1, ... – номер текущей итерации; Δxk ~ N(0, σk) – центрированное нормально распределённое псевдослучайное приращение; число точек определения реализации Nk = Nk-1/r определяется величиной коэффициента разбиения 0 < r < 1. Базовая версия алгоритма последовательных случайных сложений была предложена Р. Фоссом [1] и предусматривала использование показательной функции распределения σk по итерациям: σk = σ0*rkH, где 0 < H < 1 – показатель Хёрста. Обобщение алгоритма последовательных случайных сложений разработано и реализовано П.В. Москалевым [2,3] и допускает использование произвольных функций распределения σk по итерациям (в библиотеке "Voss" по-умолчанию используется распределение Пуассона).
Функциональные возможности: Предельные размеры генерируемых реализаций ограничены лишь разрядностью используемой версии операционной системы и размером доступной оперативной памяти. Инструментальные средства создания: R версии 2.14.0 С регулярно обновляемыми результатами выполнения описанных в документации к библиотеке "Voss" тестовых примеров на стендах с различной программно-аппаратной конфигурацией можно ознакомится по URL: http://cran.r-project.org/web/checks/check_results_Voss.html
|
2014-04-10
Назначение – Библиотека "RIFS" обеспечивает построение и отображение реализаций предфрактальных множеств в Rn с помощью рандомизированной системы итерированных функций. Область применения – Компьютерное моделирование и анализ данных, обладающих фрактальной структурой. Используемый алгоритм: Применяемая в библиотеке "RIFS" рандомизированная система итерированных функций (РСИФ) строится на основе формулы: xi+1 = (xi + muj*zj)/(1+muj), где xi – i-ая итерационная точка предфрактала; zj – j-ая псевдослучайная точка протофрактала Z, выбранная согласно распределению вероятностей P(Z); muj – коэффициент разбиения итерационных отрезков, соответствующий j-ой псевдослучайной точке Z. Под протофракталом понимается множество точек Z вместе с множеством коэффициентов разбиения итерационных отрезков M и заданным распределением вероятностей P(Z), которое определяет характеристики порождаемого фрактала A. Под предфракталом понимается счетное множество точек Х, соответствующее выборке A и порождаемое в результате итераций РСИФ.
Базовая рандомизированная система итерированных функций была предложена и исследована А.Г. Буховцом с соавторами [1,2]. Алгоритм построения реализаций фрактальных структур на основе рандомизированной системы итерированных функций был реализован П.В. Москалевым и А.Г. Буховцом [3,4]. Алгоритм построения реализаций фрактальных структур на основе матрицы случайных сумм был реализован П.В. Москалевым, А.Г. Буховцом и Т.Я. Бирючинской [4].
Инструментальные средства создания – R версии 2.14.0. |
2014-03-31
Назначение - Обеспечение интерфейса интеграции, позволяющего наполнять целевую БД данными, полученными из различных источников на основании критериев выборки. Область применения - Любая сфера бизнеса, где необходимо для наполнения БД получать данные из внешних систем (например, автомобильный дилер: получение данных по клиентам, автомобилям, маркам, моделям, модификациям, прайс-листам, запчастям и сервисным работам из внешней базы данных импортера с контролем целостности и релевантности). Используемый алгоритм - Алгоритм разработан автором. В качестве алгорима обработки данных выступает логика разбиения синхронизируемых запросов на очередь и обработка этой очереди как в синхронном, так и асинхронном режимах, в зависимости от настройки пользователя. Для уменьшения нагрузки на программно-аппаратную часть реализована клиент-серверная архитекутура с основной обработкой очереди в системном сервисе, связь с которым клиентская часть поддерживает за счет очереди сообщений. Для уменьшения нагрузки на стандартные методы доставки сообщений в ОС Windows в очереди сообщений передаются только информация о состоянии сервиса интеграции (запущен или остановлен), времена начала и окончания синхронизации каждого из синхронизируемых запросов. Выборка релевантных записей для ускорения получения результатов строится на анализе последней даты изменения записи, получаемой из системной таблицы баз данных. Контроль целостности строится на рассчете контрольной суммы, отвечающей за содержимой таблицы. В случае, если синхронизируемый запрос получает данные не из реляционной базы данных, а из файла типа XML, релевантность записи определяется системными битами релевантности файла на жестком диске, что позволяет обрабатывать только актуальные записи на диске. Программное решение позволяет производить и настраивать через пользовательский интерфейс интеграцию с различными источниками данных, в качестве которых могут выступать как традиционные базы данных, так и файлы XML типа. Задание синхронизации может выполняться как по расписанияю, так и по запросу. Запросы на получение данных могут редактироваться во встроенном редакторе запросов, изменения в котором применяются сразу же, без необходимости перезапуска процесса интеграции. Функциональные возможности - На данный момент отсутствуют какие-либо ограничения на объем обрабатываемых данных. В процессе тестовых испытаний и опытной эксплуатации проводилась успешная интеграция и обработка данных суммарным объемом 898000 строк. Общая загрузка системы не превышала 10% в пиковые периоды обработки данных. Более подробное описание функционала и методики работы - в прикрепленном файле. Инструментальные средства создания - Microsoft Visual Studio 2012, EntityFramework, Microsoft Visual C++ |
2013-12-31
Назначение - Противодействие разрушающим воздействиям DoB (Depletion of Battery), направленным на быструю разрядку батареи сенсора в беспроводных сенсорных сетях. Используемый алгоритм - опубликован в статье: Vladimir V. Shakhov: Protecting Wireless Sensor Networks from Energy Exhausting Attacks. Lecture Notes in Computer Science, Volume 7971, 2013, pp 184-193. (ISSN0302-9743). Алгоритм основан на методе кумулятивных сумм для обнаружения «разладки» случайного процесса. Функциональные возможности - Требуется настройка параметров алгоритма, в частности порогового значения, для того, чтобы запаздывание в обнаружении "разладки" было приемлемым в конкретном случае. Априорная информация о характере распределения моментов возникновения «разладки» не требуется. Уменьшение порогового значения приводит к более быстрому обнаружению атаки, однако при этом увеличивается вероятность ложной тревоги. Во вложении имеется график зависимости оценики математического ожидания времени до объявления ложной тревоги от величины порога. Кроме того, в прилагаемом архиве содержится С++ файл (example_alg.cpp), демонстрирующий возможности программы (создание потока случайных наблюдений, по которым делается вывод о наличии атаки, инициализация параметров атаки, вычисление порогового значения, обнаружение атаки) и скриншот с результатом работы. Инструментальные средства создания - MSVC 2008, библиотека libRNGnet. |
2013-12-31
Назначение: Оценка вероятностно-временных характеристик надёжности и живучести сетей Используемый алгоритм: Вычисление вероятности блокировки пакета и средней задержки пакета в сетевом узле проводится с использованием СМО специального вида, разработанных с учетом специфики различных типов сетей (IP сети, WSNs, OBS). В программах реализованы алгоритмы оценки вероятностно-временных характеристик, описанные в публикациях:
Кроме того, для тестирования алгоритмов реализованы формулы расчета характеристик некоторых СМО (см. Клейнрок Л. Теория массового обслуживания. — М.: Машиностроение, 1979. — С. 432.) Функциональные возможности - предполагается, что буфер сетевого узла содержит не более 231 пакетов Инструментальные средства создания - MSVC, библиотека libRNGnet |
- « первая
- ‹ предыдущая
- …
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- …
- следующая ›
- последняя »