Разработки СО РАН - каталоги программ и БД

Поиск по каталогам:

2019-12-29

Назначение - оптимизация сетей различного назначения с целью повышения надёжности.

Область применения - проектирование сетей различного назначения.

Используемый алгоритм - генетический алгоритм. Программа позволяет для заданной структуры сети с ненадёжными вершинами определить оптимальное количество необходимых стоков (узлов, предназначенных для сбора информации с остальных) и их расстановку. Предполагается, что стоки могут быть размещены в узлах сети. Для каждого узла сети задаются значения надёжности и стоимости установки стока в этом узле. Под надёжностью сети понимается вероятность связности заданной доли (Т) узлов с каким-либо из стоков. Этот показатель подробно описан в статье [1], наряду с методом его расчёта. Алгоритм расстановки представлен в работе [2].

[1] D. Migov, V. Shakhov. Reliability of Ad Hoc Networks with Imperfect Nodes // Springer Lecture Notes in Computer Science (in MACOM 2014). Vol. 8715, 2014, p. 49-58. (http://link.springer.com/chapter/10.1007%2F978-3-319-10262-7_5)

[2] Волжанкина К.А., Мигов Д.А. Генетический алгоритм размещения стоков в беспроводной сенсорной сети с ненадёжными узлами для повышения вероятности успешного мониторинга // Материалы Межд. конференции "Актуальные проблемы вычислительной и прикладной математики", Новосибирск, 2019. Новосибирск: ИВМиМГ СО РАН, 2019, стр. 328-332.

Поиск ведётся в условиях наперёд заданных ограничений.

Входные данные программы: структура сети в виде графа, пример входных данных предоставлен в сопутствующих файлах (массивы KAO FO или полный файл предшественников), значения надёжности для всех узлов связи (числа от 0 до 1), параметры генетического алгоритма (размер популяции, кол-во поколений, размер турнира, вероятность мутации), количество устанавливаемых узлов, Т - доля узлов сети, которые должны быть связны с каким-либо из стоков, условия остановки алгоритма: количество поколений, ограничение на время работы алгоритма и стагнация (задаётся количество поколений, в которых вырождается решение).

Инструментальные средства создания - Delphi.

Алгоритм разработан в рамках гранта РФФИ № 18-07-00460.

2019-12-27

Назначение - установление оптимальных значений длин фаз на светофорных объектах в городской транспортной сети.
Область применения - оптимизация и увеличение эффективности транспортной сети мегаполисов.
Используемый алгоритм - в основе программы лежит эвристический алгоритм роя частиц, позволяющий осуществлять эффективный поиск решений с малой или нулевой относительной погрешностью. Для определения качества получаемых решений используется пакет микросимуляционного моделирования SUMO.
Функциональные возможности - расчет длин фаз и сдвигов фаз для заданного участка городской транспортной сети. Размерность решаемых задач - до 50 светофорных объектов (до 5 фаз на каждом СО). 
Инструментальные средства создания - среда разработки VisualStudio 12.0, язык программирования C#, микросимуляционный пакет SUMO

2019-06-18

Назначение - Программа Condense предназначена для кластеризации наборов конформационных состояний аминокислотных остатков и/или фрагментов полипептидной цепи (пептидов) по значениям торсионных углов. На вход программы подается специальным образом структурированная информация о величинах торсионных углов аминокислот/пептидов.

Результатом работы программы является список кластеров конформаций: информация о каждом кластере, значения торсионных углов центральной конформации в кластере, число элементов, попавших в этот кластер, среднее значение между элементами, попавшими в кластер.

Дополнительно можно выводить все элементы, попавшие в данный кластер.
 

Область применения - молекулярная динамика белков и пептидов, структурная биология
Используемый алгоритм - метод невзвешенного попарного центроидного усреднения (невзвешенный центроидный метод, UPGMC ). В этом методе расстояние между двумя кластерами определяется как расстояние между их центрами тяжести (Sneath, P. H., & Sokal, R. R. (1973). Numerical taxonomy. The principles and practice of numerical classification).
Функциональные возможности - результатом кластеризации являются центральные структуры кластеров и, в зависимости от параметров, полный список элементов кластера. Программа была использована для анализа подвижности пентапептидов методом молекулярной динамики  (Nekrasov, A.N., Alekseeva, L.G., Pogosyan, R.А., Dolgikh, D.A., Kirpichnikov, M.P., de Brevern, A.G. and Anashkina, A.A., 2019. A minimum set of stable blocks for rational design of polypeptide chains. Biochimie, 160, pp.88-92). Возможен анализ до 10000 пространственной структур пептидов и фрагментов полипептидных цепей.
Инструментальные средства создания - языкеС++

Алгоритм разработан в рамках выполнения работ по теме "Фундаментальные проблемы математического моделирования" Программы № 43 фундаментальных исследований Президиума РАН по стратегическим направлениям развития науки, грант «Математическая модель пространственной организации природных полипептидных цепей на основе информационного контента первичной структуры»

Программа запускается командой condense *.ang *.out

где  ang-файл содержит блоки информации, содержащие значения торсионных углов, описывающие конформации, которые будут подвергнуты кластеризации.

out-файл содержит результаты кластеризации.

Параметры, определяющие режимы работы программы, задаются в файле condense.cfg

Во вложении - файл с инструкцией по использованию программы readme_condense.doc

2019-03-29

Назначение - распределение объёмов бункерных накопителей в производственной линии.
Область применения - проектирование производственных систем.
Используемый алгоритм - гибрид алгоритма ветвей и границ и генетического алгоритма, особенность которого - использование приближенного решения в качестве начального рекорда на входе алгоритма ветвей и границ. Приближенное решение построено однократным запуском генетического алгоритма.

Результаты алгоритма опубликованы в статье:

Dolgui A., Eremeev A.V., Sigaev V.S. HBBA: hybrid algorithm for buffer allocation in tandem production lines // Journal of Intelligent Manufacturing.–– 2007. –– Vol. 18, no. 3. –– P. 411––420.

Функциональные возможности - распределение объёмов бункерных накопителей между единицами оборудования в производственной линии  для максимизации дохода от использования линии за амортизационный период с учётом её средней производительности, капитальных затрат на установку бункерных устройств и стоимости хранения деталей.

Входные данные - файл с описанием линии

Выходные данные - файл с параметрами найденного решения.

Инструментальные средства создания - Lasarus

2019-03-18

Аннотация: Программа позволяет выполнить нагрузочное тестирование и анализ эффективности системы управления ресурсами (СУР) распределенных вычислительных систем.

Назначение: Программа состоит из двух модулей. Первый используется для создания потока загрузки на функционирующую СУР и запускается для каждого набора политик и алгоритмов планирования PBS Torque. Второй модуль анализирует системные лог файлы и для каждого набора задач рассчитывает показатели, характеризующие эффективность планирования.

Область применения: Высокопроизводительные распределенные вычислительные системы.

Используемые алгоритмы:

На входе программа использует наборы масштабируемых задач, параметры которых соответствуют моделям загрузки промышленных вычислительных систем (Parallel Workload Archive). Набор задач задаётся в XML формате и архивируется с целью экономии места. Файлы с исходными наборами задач могут быть созданы с помощью пакета программ MOJOS. Формат XML:

<JOBSET GUID="1024_bit" CREATIONDATE="date" COUNDJOBS="XXX">

<JOB GUID="1024_bit" ARRIVALTIME="start_time" COUNTREQUESTS="XX">

<REQUEST NODES="XX" TIME="solution_time1" PRIORITY="XX"/>

<REQUEST NODES="YY" TIME="solution_time2" PRIORITY="XX"/>

...

</JOB>

...

</JOBSET>

Показатели эффективности, такие как время решения всех задач набора, среднее время ожидания задач в очереди СУР и % загрузки ресурсов, для всех вариантов настройки СУР и для всех наборов задач на выходе программы сохраняются в таблицу в формате CSV с заголовком:

NODES_COUNT;JOBS_COUNT;RIGID_JOBS_PART;SCHEDULER;POLICY;ALGORITHM;WINDOW;QUEUE_RUN_TIME;AVERAGE_WAIT_TIME;WORKLOAD.

Программа разработана в рамках ГЗ 0306-2016-0018